This post summarizes my deep learning environment setting on freshly installed Ubuntu16.04.

Nvidia Driver Installation

  1. Download nvidia driver
    $ cd ~/Download
    $ wget http://us.download.nvidia.com/XFree86/Linux-x86_64/390.42/NVIDIA-Linux-x86_64-390.42.run
    
  2. Configuration
    $ sudo vim /etc/modprobe.d/blacklist-nouveau.conf
    
    blacklist nouveau
    options nouveau modset=0
    
    $ sudo update-initrafms -u
    $ sudo reboot
    
  3. Installation
  • After a reboot, enter CLI mode and type:
    $ sudo service stop lightdm
    $ cd ~/Download
    $ sudo sh  ./NVIDIA-Linux-x86_64-390.42.run --no-opengl-files
    $ sudo service restart lightdm
    
    • Note:
      • Do not give the option --no-opengl-files if you work in ubuntu GUI for the most of time. If you give --no-opengl-files option, GUI runs in cpu, which slows down the user experience.
      • When The system is running in low-graphics mode appears, install dkms with sudo apt-get install dkms before adding blacklist-nouveau.conf. Then, select YES when the NVIDIA-driver installation process asks for applying dkms in the system.

Basic Installations & Settings

  1. Mount NAS
    $ sudo mkdir -p /Mango/Users /Mango/Common /Jarvis/logs /Jarvis/workspace
    $ sudo vim /etc/fstab
    
    DOMAN or IP of NAS:/volume1/Users /Mango/Users nfs auto,nofail,noatime,nolock,intr,tcp,actimeo=1800,rsize=32768,wsize=32768 0 0
    DOMAN or IP of NAS:/volume2/Common /Mango/Common nfs auto,nofail,noatime,nolock,intr,tcp,actimeo=1800,rsize=32768,wsize=32768 0 0
    DOMAN or IP of NAS:/volume1/logs /Jarvis/logs nfs auto,nofail,noatime,nolock,intr,tcp,actimeo=1800,rsize=32768,wsize=32768 0 0
    DOMAN or IP of NAS:/volume1/workspace /Jarvis/workspace nfs auto,nofail,noatime,nolock,intr,tcp,actimeo=1800,rsize=32768,wsize=32768 0 0
    
    $ sudo mount -a
    $ ln -s /Mango ~/Mango
    $ ln -s /Jarvis ~/Jarvis
    
  2. Basic installations
    $ sudo apt-get install git
    $ sudo apt-get install wget
    $ sudo apt-get install curl
    $ sudo apt-get install tmux
    $ sudo apt-get install vim
    $ git clone https://github.com/VundleVim/Vundle.vim.git ~/.vim/bundle/Vundle.vim
    $ sudo apt-get install zsh
    $ sh -c "$(wget https://raw.githubusercontent.com/robbyrussell/oh-my-zsh/master/tools/install.sh -O -)"
    
  3. Basic configurations
    $ git clone git@github.com:codeslake/settings.git
    $ cp settings/.vimrc ~/
    $ cp settings/.zshrc ~/
    $ cp settings/.tmux.conf ~/
    $ cp -r settings/.tmux ~/
    $ cp wombat256mod.vim /usr/share/vim/vim*/colors
    $ rm -r settings
    

    Configure vim

  4. Install vim plugins
    $ vim
    :BundleInstall
    
  5. Install YouCompleteMe for vim
    $ sudo apt-get install vuild-essential cmake
    $ sudo apt-get install python-dev python3-dev
    $ cd ~/.vim/bundle/YouCompleteMe
    $ ./install.py -all
    

Docker, Nvidia-docker

  1. Install docker
    $ curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key add -
    $ sudo add-apt-repository "deb [arch=amd64] https://download.docker.com/linux/ubuntu $(lsb_release -cs) stable"
    $ sudo apt-get update 
    $ apt-cacheolicy docker-ce
    $ sudo apt-get install -y docker-ce
    $ sudo usermod -aG docker ${USER}
    
  2. Install nvidia-docker
    $ wget -P /tmp https://github.com/NVIDIA/nvidia-docker/releases/download/v1.0.1/nvidia-docker_1.0.1-1_amd64.deb
    $ sudo dpkg -i /tmp/nvidia-docker*.deb && rm /tmp/nvidia-docker*.deb
    $ sudo reboot
    
  3. Pull images from dockerHub
    $ docker pull codeslake/tensorflow-1.10.0:latest
    
  4. Useful Commands
    $ nvidia-docker run --privileged -it -v /home/junyonglee:/root -v /Jarvis:/root/Jarvis -v /Mango:/Mango -v /Mango:/root/Mango -p 7001-7004:7001-7004 -e "TERM=`echo $TERM`"-e "LNAG=en_US.UTF-8" --name junyonglee_tf --rm codeslake/tensorflow-1.8.0:latest /bin/zsh
    $ nvidia-docker attach junyonglee_tf
    $ nvidia-docker exec -it junyonglee_tf /bin/zsh
    $ docker commit -a "Junyong Lee" -m "tf1.10.0" junyonglee_tf codeslake/tensorflow-1.10.0:latest
    $ docker build --tag codeslake/tensorflow-1.10.0:latest
    

Leave a comment